
Do Software Engineers benefit from Source Code Navigation with Traceability? –
An Experiment in Software Change Management

Patrick Mäder and Alexander Egyed
Institute for Systems Engineering and Automation (SEA)

Johannes Kepler University, Linz, Austria
patrick.maeder|alexander.egyed@jku.at

Abstract—For decades now, mainstream development envi-
ronments provide the same basic automations for navigating
source code: mainly searching and the tree exploration of
files and folders. This may imply that other automations
have little additional value or too steep a learning curve for
mainstream adoption. This paper investigates whether existing
navigation automations enriched with traceability benefit basic
maintenance tasks such as changing features and fixing bugs
in code. To test this, we conducted a controlled experiment
with 52 subjects performing real maintenance tasks on two
third-party development projects: all with the same navigation
tool but half of the tasks with and the other half without
traceability navigation. We found that the existence of trace-
ability profoundly affected the quality of the change tasks
and fundamentally changed how software engineers navigated
through source code. We show that software engineers benefit
instantly from traceability, without training, which is to show
that the current automations available to software engineers
are by no means sufficient or the only easy ones to use.

I. INTRODUCTION

Traceability relations capture dependencies of artifacts
created during the development of a software system. Advo-
cates of traceability cite advantages like easier program com-
prehension and support for software maintenance. Despite a
growing popularity, there is little published evaluation about
the use of traceability and stakeholders still perceive the
creation and maintenance of traceability links to be tedious
and ineffective [1].

It is our assumption that a software engineer is expected
to benefit from traceability much like she or he is expected
to benefit from other automations available today: such as
search capabilities or project folder exploration capabilities.
To test that assumption, we set-up a study with 52 subjects
performing real maintenance tasks on two third-party de-
velopment projects. For half of the tasks, the subjects were
also given a special automated navigation support based on
traceability information whereas for the other half of the
tasks this special capability was not provided. The navigation
capability based on traceability showed where requirements
affected by change were implemented.

The goal of this work is to investigate whether software
engineers benefit from those capabilities. A change task in-
volves three activities: 1) understanding the problem (change

task), 2) searching for all relevant places in the source code
where a change task needs to be realized, and 3) imple-
menting the change (changing the code). Automations for
navigation are not expected to support activities 1 and 3 in
a significant manner. However, activity 2 should particularly
benefit from navigation automations based on traceability.
The goal of this work to study automations that are available
to a software engineer for navigation and that use traces.

While to date no automation exists for creating and
maintaining traceability between requirements and code,
this paper provides the motivation that such automation
would be highly beneficial. This motivation is based on
the observation that subjects working with the traceability
navigation were not only 21% faster and 60% more correct
but used the navigation features available to them in a
profoundly different manner. The data suggests that state-of-
the-practice automations that support software engineering
change tasks are by no means sufficient and navigation based
on traceability holds a large potential in improving software
engineering practice.

II. RELATED WORK

Maintenance is a major cost driver in the development of
a system and traceability navigation could potentially reduce
that costs, but so far no empirical evidence is available.
There are several studies focusing on software maintenance,
e.g., Dzidek et al. [2] study the costs and benefits of UML
documentation for software maintenance and Curtis et al. [3]
compare the performance of subjects solving maintenance
tasks with complexity measures (e.g., Halstead and McCabe
metrics) evaluating the same tasks. Ko et al. [4] study
ten developers while trying to understand unfamiliar code.
The authors state that: “Eclipse’s navigational tools caused
significant overhead” during that process. Subjects collected
relevant information as file tabs and others, but that markers
got lost again as these interfaces were used for other tasks.
On average, 35% of the time was spent on mechanics of
navigation within and between files – quite consistent with
an observation by Glass [5]. Empirical work on requirements
traceability was focused on very general questions [6], [7],
but not on assessing the actual effect of traceability for
certain development activities.



III. METHOD

Participants: Subjects comprised 52 students of com-
puter science, studying at the JKU Linz. These participants
had an average experience of 5.3 years in software de-
velopment and had on average spent one of these years
in industrial environments. The source code used for the
experiment was unknown to the subjects.

Independent Variables: We used two different software
projects: Gantt Project and iTrust. Traceability was either
available to a subject on a particular task (with traces) or it
was not available (no traces). Traces were provided as they
had been created by the original developers, some of them
tracing to source code files and others to methods within
files. Altogether, our experiment included eight distinct
tasks: four tasks for Gantt (subsequently referred to as tasks
Gantt A to D) and four tasks for iTrust (iTrust A to D).
The tasks represent maintenance activities that previously
occurred in these projects. For Gantt we selected bug reports
from the issue tracking system and provided them unchanged
to the participants. For iTrust we compared old versions of
the use case specification with the current one and selected
single change requests. Participants were not required to
actually implement changes, but to identify the artifacts to
be changed and to verbally describe each change. The oder
in which tasks were assigned to subjects and the industry
experience of a subject were also considered as variables.

Dependent Variables: This study had three dependent
variables, the overall performance, the workflow, and the
navigation strategy of subjects working on a maintenance
task. Each variable has been operationalized by multiple
measures. Performance was measured by the time to solve
a task and the correctness of the solution. The workflow
was measured as time that a subject spent on three different
document types: the description of a task (task description),
source code that was irrelevant for the solution of a task
(irrelevant code), and source code that was relevant to solve
a task (relevant code). The navigation strategy was measured
by how often each of the four available navigation types
were applied: 1) by double click on a node of the file tree,
2) by a click on a trace in the trace list, 3) by a click on
a retrieved file in the results list of the search functionality,
and 4) by navigating through tabs of open files.

Design: Participants were randomly assigned, but in
a way that each had equally experienced each level of the
independent variables project, task, and traceability.

Procedure and Material: We spent 20 min going step
by step through the material, explaining the experiment and
the two projects (Gantt, iTrust) to work on. The introduction
further comprised instruction on the use of the experimenting
tool and two practice exercises with the experimenting tool
distinct from the experimental tasks. After the exercises,
each participant had to complete the first part of the ques-
tionnaire, gathering information about her/his development
experience. We allowed up to two hours for working on

the eight assigned tasks. For each task, the participants had
to capture their changes in the questionnaire that provided
templates for capturing changes.

Figure 1. The experimenting tool and its major features

Experimenting Tool: In order to control and capture
participants’ actions during the experiment, we implemented
a specific editor tool. We decided against a standard IDE
(like Eclipse), because we could not ensure that all our
subjects would be equally experienced in using the more
sophisticated functionality of the tool, creating a possible
bias in the results. The developed tool is a text editor with
typical development support (see Figure 1). It provides a
tree selector for browsing the project structure and opening
files from it. Multiple files can be opened in separate tabs,
and the content of files is syntax highlighted (both JAVA and
JSP). Additionally, users can conveniently search within all
files of a project and within a selected file. Traceability links
are provided in a separate window above the tree selector. A
click on a link opens the related file and shows the related
method, if the trace refers to a specific method.

IV. RESULTS

The discussion of results is split into three research
questions: 1) how does the performance of a maintainer
working with traceability differ from one working without
traceability, 2) how much of the time to solve a task was
spent on which type of document, and 3) what type of
navigation has been used by subjects to solve a task. The
following subsections refer to these questions respectively.

A. Performance with and without Traceability

We found that subjects working with traceability per-
formed tasks on average 21% faster and created 60% more
fully correct solutions. Statistically, both differences are
highly significant. Subjects working on the Gantt project
experienced a stronger support through traceability (24%



faster, 91% more correct solutions) than on the iTrust project
(18% faster, 38% more correct solutions).

B. Workflows with and without traceability

Workflow refers to the amount of time that subjects
spent on the document categories: task description, files that
required a change in order to solve a task (relevant code),
and files that were not required to be updated in order to
solve a task (irrelevant code).

Type of Task: We found that across all tasks, subjects
working with traceability spent more time on relevant code
than subjects working without traceability (45% Gantt A –
501% Gantt B). Subjects working without traceability spent
considerably more time on irrelevant code. In relation to the
performance of subjects, these results show that a faster and
more correct task completion of subjects with traceability
correlates with more time spent on relevant code.

T
im

e 
sp

en
t o

n 
do

cu
m

en
t t

yp
e 

[%
]

0.0

0.2

0.4

0.6

0.8

1.0

Quarter I Quarter II Quarter III Quarter IV

task description
irrelevant code
relevant code

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

Figure 2. Percentages of time spent on understanding the task, browsing
irrelevant code, and browsing relevant code separated into four quarters of
progress per task (only correctly solved tasks)

Progress: Figure 2 shows an effort distribution across
document types in relation to the stage of progress of a task
solution. We divide the overall time, a subject was working
on a task into four quarters of equal length. Only correct
solutions have been aggregated for the figure. Independently
of whether a task was performed with or without traceabil-
ity, with each additional quarter, subjects spent a growing
amount of time on relevant files. While the task description
becomes at the same time less important. Especially in the
first three quarters, subjects with traceability spent consider-
ably more time on relevant files than those working without
traceability. Indicating that subjects were willing to be led
and explore the relevant places within the source code with
traceability. The fourth quarter is distributed almost similar
for subjects with and without traceability, indicating that the
process of finding a solution to a task is not dependent
on the availability of traceability. Subjects solving a task
correctly with traceability spent across all quarters less time
on the task description than subjects without traceability. For
people, which are able to solve a task, traceability slightly
lowers the time for understanding the problem.

Industry Experience: Figure 3 shows the effort distri-
bution across document types in relation to the industry ex-
perience of subjects. For subjects working with traceability
no significant differences are visible. For subjects working
without traceability, the plot shows that more experienced
subjects spent more time on relevant code and task de-
scription and less time on irrelevant code. Subjects with
traceability and no industry experience create 159% more
correct solutions, but that effect is diminishing for subjects
with more experience (4–6 years of experience: 6%).

T
im

e 
sp

en
t o

n 
do

cu
m

en
t t

yp
e 

[%
]

0.0

0.2

0.4

0.6

0.8

1.0

0 years 1−3 years 4−6 years

task description
irrelevant code
relevant code

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

t=959s t=706s t=867s t=765s t=749s t=603s

Figure 3. Percentages of time spent on understanding the task, browsing
irrelevant code, and browsing relevant code in relation to the industry
experience of subjects in years

C. Navigation strategies with and without traceability

All subjects were able to navigate by three means: double
clicking on a file name in the tree selector (tree), clicking on
a file name retrieved by a search (search), and clicking on a
tab containing an already opened file (tab). Additionally, for
tasks solved with available traceability, subjects could click
on a trace (trace).

Task Type: For tasks were traceability was available,
it was used for 20 − 62% of the navigations depending on
the task. Subjects working without traceability replace the
missing trace navigation with searches (34−48% of the nav-
igations). For tasks with traceability, the search functionality
is used to a much smaller extend (1−23%). Navigation from
the file tree has been used by subjects without traceability
for 16− 30% and by subjects with traceability for 4− 23%
of all navigations. The availability of traceability seems to
have no effect on that type of navigation. Subjects without
traceability navigated 26 − 38% through tabs and subjects
with traceability 18 − 52%. By further evaluating the data,
we found that subjects regularly used traces also to focus
files which were open already. That fact explains the lower
number of tab navigations.

Progress: Figure 4 shows the distribution of navigation
types in relation to the progress of a task solution (four
quarters), without and with traceability and includes only
correctly solved tasks. Subjects working with traceability
used it in quarter one extensively. In the following quarters
traceability becomes stepwise less relevant and is mostly
replaced by tab navigation. Subjects without traceability,



N
av

ig
at

io
n 

ty
pe

 d
is

tr
ib

ut
io

n 
[%

]

0.0

0.2

0.4

0.6

0.8

1.0

Quarter I Quarter II Quarter III Quarter IV

tab
tree
search
trace

nav=4 nav=5 nav=6 nav=7 nav=6 nav=7 nav=5 nav=6

Figure 4. Distribution of navigation types as percentage of all navigations
separated into four quarters of progress per correctly solved task

apply the search functionality instead, also with a shrinking
relevance from quarter to quarter. In quarters three and four,
subjects with traceability apply less tab navigation than those
without traceability. We found that subjects used traces to
switch tabs, instead of finding and selecting the tab directly.

N
av

ig
at

io
n 

ty
pe

 d
is

tr
ib

ut
io

n 
[%

]

0.0

0.2

0.4

0.6

0.8

1.0

0 years 1−3 years 4−6 years

tab
tree
search
trace

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

no tra
ce

s

with
 tra

ce
s

nav=27 nav=18 nav=20 nav=24 nav=16 nav=20

Figure 5. Distribution of employed navigation types as percentage of all
navigations in relation to the industry experience of subjects

Industry Experience: Figure 5 shows the distribution
of navigation types in relation to the industry experience
of the subjects that were performing the task. There is a
clear tendency, independent of available traceability, that
more experienced subjects use searches more frequently for
navigating. These searches replace tree navigation, which is
more frequently used by less experienced subjects. Trace-
ability navigation appears to largely displace search-based
navigation and used equally well independent of experience.

V. THREATS TO VALIDITY

This section discusses what is considered to be the most
important threats to the validity of the experiment. Our
experiment shows results of subjects with a spread of
experiences, but with overall little industrial experience (on
average 1 year) and does accordingly not allow us to draw
conclusions for more experienced developers. In order to
exhaustively explore these effects an additional study with
more experienced subjects is required and planned by the
authors. We tried to keep all aspects of the experiment as
realistic as possible, applying two systems, using four tasks

per project and having different kinds of real tasks (bug
reports vs. feature request). Systems, tasks and traces have
been used in the original state. Focusing on the tasks we
selected, our results show that all are neither overly easy
nor unsolvable, suggesting a balanced selection. To decrease
variability in knowledge across participants we provided
a written introductory tutorial. Treatments were randomly
assigned to the participants in order to balance learning
effects. None of the participants knew the development
perspective of the projects prior to the experiment.

VI. CONCLUSIONS

We conducted a controlled experiment with 52 subjects
performing 315 maintenance tasks on two third-party de-
velopment projects: half of them with and the other half
without traceability navigation. Our finding is that traceabil-
ity navigation has a profound effect on the performance, the
quality, and the workflow of how change tasks are tackled.
We found that subjects relied predominantly on traceability
navigation when it was available, displacing mostly the
search navigation which was predominant when traceability
navigation was not available. Participants adopted traceabil-
ity immediately, from the first performed task as their major
way of navigation within the source code (without training).
Traceability navigation was the means to quickly identifying
which parts of the code need changing. Understanding the
change task appeared to benefit little from traceability and
neither did formulating a solution once the relevant code
was found. Concluding, our study gives additional rationale
to justify significant effort in traceability research.

REFERENCES

[1] P. Arkley and S. Riddle, “Overcoming the traceability benefit
problem,” in 13th Int’l Req. Eng. Conf., 2005, pp. 385–389.

[2] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic
empirical evaluation of the costs and benefits of UML in
software maintenance,” IEEE TSE, vol. 34, no. 3, pp. 407–432,
2008.

[3] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and
T. Love, “Measuring the psychological complexity of software
maintenance tasks with the halstead and mccabe metrics,”
IEEE TSE, vol. 5, no. 2, pp. 96–104, 1979.

[4] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An
exploratory study of how developers seek, relate, and collect
relevant information during software maintenance tasks,” IEEE
TSE, vol. 32, pp. 971–987, 2006.

[5] R. L. Glass, Facts and Fallacies of Software Engineering.
Boston, MA: Addison-Wesley Professional, 2002.

[6] O. Gotel and A. Finkelstein, “An analysis of the require-
ments traceability problem,” in Proc. 1st Int’l Conf. Req. Eng.
ICRE94., 1994, pp. 94–101.

[7] B. Ramesh and M. Jarke, “Toward reference models of re-
quirements traceability,” IEEE TSE, vol. 27, no. 1, pp. 58–93,
2001.


